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Abstract—The increasing number of candidates competing in
cryptographic contests has made hardware benchmarking using
the traditional Register-Transfer Level (RTL) methodology too
inefficient and potentially unfair, especially at the early stages of
the competitions. In this paper, we propose supplementing, and
eventually replacing, this traditional RTL methodology with the
use of High-Level Synthesis (HLS) tools. We apply our proposed
HLS-based approach to FPGA benchmarking in the ongoing
CAESAR contest, by comparing and ranking 16 authenticated
ciphers, including the current standard, AES-GCM, and the pri-
mary variants of 13 Round 3 CAESAR candidates. After a careful
survey of available HLS tools, we chose Xilinx Vivado HLS as our
primary benchmarking tool. Our study has demonstrated high
correlation between the rankings of the evaluated algorithms,
obtained using both investigated methodologies. In particular,
after applying HLS, the algorithm rankings in terms of two major
performance metrics - throughput and throughput to area ratio
- have either remained unchanged or have been affected only for
algorithms with very similar RTL performance.

Index Terms—authenticated ciphers, CAESAR, benchmarking,
hardware, FPGA, HLS.

I. INTRODUCTION & MOTIVATION

Cryptographic contests have emerged as a commonly ac-
cepted way of developing cryptographic standards [1]-[3].
After candidates for a cryptographic standard are submitted to
a contest, the evaluation process begins. The typical criteria are
security, performance in software, performance in hardware,
and flexibility. Although security is commonly accepted to be
the most important criterion, it is rarely by itself sufficient
to determine a winner. This is because multiple candidates
generally offer sufficient security, and the trade-off between
security and performance must be investigated.

Performance in software has been shown to be measured
efficiently, accurately and reliably for a wide spectrum of
processor types using the eBACS framework [4]. However,
comparing performance (benchmarking) in hardware is still
challenging, especially for a large number of candidates eval-
vated in the early rounds of cryptographic contests.

One possible way of addressing these difficulties is the
distribution of the RTL development effort among multiple
designers, working independently, as was the case for the
Round 2 of the most-recent CAESAR Competition [5]. This
approach has its advantages, such as a larger talent pool and
smaller work effort for any particular team. However, it also

has drawbacks. The designers can differ substantially in terms
of experience and skill level. They can also devote substan-
tially different amount of time and effort to the development
and optimization of their code.

All the aforementioned problems can be potentially re-
solved by using high-level programming languages for formal
specification, and related development tools for an automated
high-level synthesis to hardware. Recent years have brought
dramatic improvements in the quality, ease of use, and effec-
tiveness of general-purpose high-level synthesis tools. In this
paper, we investigate the use of C and the new generation
of high-level synthesis tools, targeting FPGAs, for efficient
benchmarking of CAESAR candidates in hardware.

In order to verify the potential validity of our approach,
we have applied our proposed HLS-based methodology to
the evaluation of 15 variants of 13 Round 3 CAESAR
candidates, representing all single-pass candidate families,
compared against each other and against the current NIST
standard, AES-GCM.

Our primary goal is to demonstrate strong correlation be-
tween rankings obtained using both investigated methodolo-
gies. Our secondary goal is to show that the development time
may be reduced significantly, and as a result all candidates can
be implemented by the same group, or even a single designer
(leading to a much fairer comparison). Additionally, even if
the HLS-based approach is applied in parallel to the RTL-
based evaluation, as it is the case during the current CAESAR
competition, the HLS-generated results can be used to detect
any suboptimal RTL code.

It should also be stressed that we do not advocate using HLS
implementations as a replacement for RTL implementations.
For maximum fairness, an HLS implementation should be
compared with other HLS implementations only. The best time
for such comparisons is at the early stages of cryptographic
contests, when the number of candidates is large and the effort
necessary to develop their RTL code not justified.

II. PREVIOUS WORK

Previous studies have demonstrated that using HLS is a
viable solution, at least in selected domains, such as digital
signal and image processing [6]-[11]. The application of HLS



TABLE I: Benchmarking results, in number of clock cycles,
after optimization, for four cryptographic benchmarks imple-
mented using three academic HLS tools and one commercial
HLS tool [15]. The best result obtained for a given benchmark
using any of the investigated HLS tools is underlined. Due to
the licensing restrictions, the developer of the commercial tool
is not listed in [15].

[ Tools | Developer [[ aes-encrypt [ aes-decrypt | sha | blowfish |
Bambu [16] Politecnico di Milano 1,485 2,585 51,399 57,590
DWARYV [17] Delft University of Technology 3,282 2,579 71,163 70,200
LegUp [18] University of Toronto 1,191 4,847 81,786 64,480
Commercial N/A 3,735 3,923 | 124,339 96,460
Manual This Work 20 20 20,480 18,736

[ BestManual | i 60 | 129 25 3.1 ]

to cryptography is relatively new, and has been reported in
just a few earlier papers, such as [12]-[15].

The most comprehensive survey of modern HLS tools is
the Oct. 2016 paper [15] by 12 leading experts in this field,
representing three very active and prolific research centers at
Delft University of Technology, the Netherlands, Politecnico di
Milano, Italy, and University of Toronto, Canada. This survey
covers a total of 12 commercial and 14 academic tools based
on C, C++, or extended C, as well as 7 additional tools based
on other languages. For four selected tools (3 academic and
1 commercial), listed in Table I, comprehensive performance
tests were applied, using 17 benchmarks, representing multiple
domains, such as communications, computer arithmetic, image
processing, and cryptography. Four cryptographic benchmarks,
most related to the topic of this paper, are described in Table II.
They involve two block ciphers, AES and Blowfish, and one
hash function SHA-1. The results are summarized in Table I.

This table demonstrates, that even if the best result obtained
for a given benchmark using any of the four leading HLS tools
is applied, the manual RTL approach still produces the results
that are at least 2.5 times better in terms of the number of
clock cycles alone. The differences in terms of the Execution
time in microseconds, Throughput, and Throughput/Area ratio
are even higher [15]. The penalty is particularly large, over 60,
for benchmarks involving a single encryption/decryption (as in
case of aes-encrypt and aes-decrypt), rather than processing of
multiple consecutive blocks (as in case of sha and blowfish).

The previous study most similar to the topic of this paper
concerns the comparison of HLS and RTL implementations of
5 final SHA-3 candidates [14]. However, authenticated ciphers
are considerably different (and more complicated) than hash
functions. The good correlation of results for one class of
algorithms does not imply the similar correlation for another
class. Additionally, any previous studies were much smaller
in scope and concerned only past competitions.

III. CHOICE OoF HLS TooL

A commercial tool, Vivado HLS, was chosen because it is
supported by the largest FPGA company - Xilinx, and at the
same time is easily affordable to researchers in both academia
and industry. It supports the larger number of performance
optimizations than leading academic tools [15] [21]. It has very

TABLE II: Description of cryptographic benchmarks from
the CHStone Benchmark Program Suite for Practical C-based
High-Level Synthesis [15], [19], [20]

Benchmark ‘ Description

aes-encrypt | AES Key Scheduling + AES Encryption of 1 128-bit block

aes-decrypt | AES Key Scheduling + AES Decryption of 1 128-bit block

sha Hashing of 256 512-bit blocks using SHA-1

blowfish Blowfish Key scheduling + Blowfish Encryption of 650 64-bit blocks in the CFB64 mode
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Fig. 1: Partition of a High-Speed AEAD Core into major units

CipherCore

good documentation [21] and user support. It also produces
portable HDL source code that is platform agnostic. Our study
was limited to Xilinx devices only because of the current
licensing restrictions of Vivado HLS, which prohibit its use
targeting other FPGA families (such as Altera) or ASICs.
Other HLS tools targeting specifically ASIC technology exist,
but are typically expensive and thus beyond the reach of
academic groups. We believe that using multiple HLS tools,
including academic tools with limited documentation and
support, would be too time-consuming, and would detract from
the focus of our study, which is the comparison of algorithms
and design methodologies, and not the comparison of the
available HLS tools.

IV. DESIGN METHODOLOGY
A. RTL and HLS-based Design Flows

The detailed RTL-based design methodology for developing
high-speed implementations of authenticated ciphers compli-
ant with the CAESAR API [22] is described in [23]. Ac-
cording to this methodology, the entire AEAD (Authenticated
Encryption with Associated Data) core is first divided into
four major units, shown in Fig. 1, namely: PreProcessor,
PostProcessor, FIFO, and CipherCore. The first three of these
units can be shared by high-speed implementations of all
authenticated ciphers, as long as these implementations are
compliant with [22].
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Fig. 2: RTL-based development and benchmarking flow
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Fig. 3: HLS-based development and benchmarking flow

A traditional, RTL-based hardware benchmarking flow,
shown in Fig. 2, typically starts with the translation of an in-
formal specification to a hardware description language (HDL)
code, e.g., the RTL code written in VHDL or Verilog. In
the RTL design of authenticated ciphers [23], this translation
involves developing a block diagram of the Datapath and an
Algorithmic State Machine (ASM) chart of the Controller.
Both parts of the design are constrained by the CipherCore
interface, described in [23]. They are also influenced by the
optimization target, common for all investigated algorithms,
which is typically the maximum Throughput/Area ratio.

After the manual design of the CipherCore is completed,
this code is combined with the HDL code of other units,
extracted from the Development Package for Hardware Imple-
mentations Compliant with the CAESAR Hardware API [24],
and verified using functional simulation of HDL code. This
verification is based on test vectors, generated using Reference
C Code of a given algorithm, and takes advantage of a generic
testbench provided as a part of the Development Package.

As a next step, the post-place & route results and the final
netlist are generated. Finally, the obtained netlist is undergoing
a hardware timing verification for the last check up.

The proposed HLS-based development and benchmarking
approach is shown in Fig. 3. For the maximum efficiency
and simplicity of the development flow, only CipherCore is
modeled in HLS-ready C code. The remaining three units,
PreProcessor, FIFO, and PostProcessor, are extracted from
the Development Package, and used without any changes in
both RTL-based and HLS-based design flow.

The HLS-ready C code of CipherCore is obtained by the
manual modification of the Reference C code of a given
algorithm. These modifications include a) converting the Ap-
plication Programming Interface, to infer the interface of the
CipherCore, specified in detail in [23], b) adding the HLS
tool directives, provided as pragmas, to minimize the number
of clock cycles per input block and share FPGA resources, c)
code refactoring, which involves modifying the code to make
it more suitable for parallelization and resource reuse, and
d) combining all modes of operation into a single underlying

function for resource reuse.

Once these modifications are completed, the code is verified
in software for the correct functionality. Afterward, the HLS-
ready C code is processed by the HLS tool to generate an
RTL HDL code and estimated results. If the obtained results
are worse than expected, e.g., the number of clock cycles per
block is higher than the number of cipher rounds plus a small
constant (to be expected for the basic iterative architecture),
or the resource utilization is much higher than expected, e.g.,
one observes very high register count, the HLS-ready code is
modified, and the entire process repeated. If the HLS-ready C
code of CipherCore performs as expected, this code is used to
generate the equivalent RTL code. The obtained RTL code is
further combined with the RTL code of other units, and used
to generate the final post-place and route results, as well as
the final netlist, verified using timing simulation.

B. Inferring the CipherCore Interface in C/C++

One of the most important design tasks is the conversion
of the software API of CAESAR candidates, specified at [3],
in such a way that the hardware interface of the CipherCore,
specified in [23], is automatically inferred by the synthesis
tool. This conversion is done as follows.

In the first step, input and output ports of CipherCore are
divided into groups that rely on the same handshaking signals,
as shown in Fig. 4. These groups are called Public, Secret,
Key_Ctrl, Operation, Output, and Tag_Verification. Each group
is represented in C using a structure with appropriate fields,
corresponding to individual buses or signals.

Three structure types, defined in Fig. 4, public_bus, se-
cret_bus, and output_bus, are then declared in Fig. 5 as
streaming interfaces. As a result, the handshaking signals valid
and ready, controlling the ports of the respective groups, are
inferred automatically. Similarly, for the non-streaming output
port, msg_auth_valid, the control signal msg_auth_done is
inferred automatically. Static inputs that remains constant for
the entire duration of the function call, such as decrypt, can be
represented using basic non-streaming data types, such as bool,
and require no control signals. However, inputs that may get
updated in the middle of the function call, such as key_update,
should be declared using the volatile keyword, to ensure that
the tool correctly synthesizes the desired interface.

Each field of the structures public_bus, secret_bus, and
output_bus can have a either a standard type, such as bool,
or a custom type, such as data_t, data_bytes_t, bsize_t, and
secret_t. These custom types are defined in Fig. 6. The
ap_uint<WIDTH> type is a special type provided by Vivado
HLS libraries, representing an unsigned integer of arbitrary
width, given by the parameter <WIDTH>. For example,
ap_uint<BLOCKSIZE>, with BLOCKSIZE defined as a con-
stant equal to 128, represents a 128-bit unsigned integer. Thus,
the corresponding port, inferred by an input or output of this
type is a 128-bit bus.

Once this template is created, a programmer can easily
change any port width to the desired value by simply changing
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Fig. 4: Translation of the Cipher Core interface to the respec-
tive structure types in C

typedef hls::stream<public_bus> BDI_STREAM;
typedef hls::stream<secret_bus> KEY_STREAM;
typedef hls::stream<output_bus> BDO_STREAM;

void hls_ciphercore (
// Post-Processor
BDO_STREAM& bdo_bus,
bool *msg_auth_valid,
// Pre-Processor
BDI_STREAM& bdi_bus,
KEY_STREAM& key bus,
bool decrypt,
volatile bool key update
)i

Fig. 5: Cipher Core interface described in C

/* Interface parameters */
#define BLOCKSIZE 128
#define KEYBUS 32

#define LBS_BYTES 4

/* Interface data types */
typedef ap_uint<KEYBUS>
typedef ap_uint<BLOCKSIZE>
typedef ap uint<BLOCKSIZE/8> data bytes_t;
typedef ap_uint<LBS_BYTES+1> bsize t;

secret_t;
data_t;

Fig. 6: Definition of the Cipher Core bus widths in C

TABLE III: Comparison of Reference C vs. HLS-ready C/C++

[ Data | Reference C | HLS-ready C/C++ |
Access Random: Serial:
Data can be accessed at any location | Previously accessed data must be
multiple times maintained inside of the code if required
Width Byte/Word Block size
Total Size | Known in advance Unknown until read as a part of input
Status Always available Availability unknown until the time of read

values of constants BLOCKSIZE, KEYBUS, and LBS_BYTES,
shown in Fig. 6.

Replacing a standard software API of Reference C code
with the discussed above streaming interface of HLS-ready
C has further substantial consequences on the entire code.
The major differences between the two implementations are
summarized in Table III.

C. HLS C Optimization Methodology

This section describes our HLS C optimization methodol-
ogy. The aim of this optimization is to infer an HLS-generated
RTL code that has performance the same or better than a
manually developed RTL code. The first step involves creating
an HLS-ready baseline implementation from the reference C

code. At this stage, any variables and buffers that rely on
dynamic allocation are replaced by their static versions.

Function Reuse can be considered as one of the most critical
factors in achieving an optimized design that has performance
comparable to RTL-based design. In software, a repetition
of a function call does not drastically affect performance
or memory utilization of any program. However, unless an
appropriate action is taken, a C synthesizer can treat each
function call as a separate instantiation of a hardware module.
As a result, multiple function calls can significantly increase
the design area and critical path.

One of the approaches to mitigate this effect is to add a
limit on the resource allocation for a specific function, in
order to limit its reuse. In Vivado HLS, the RESOURCE
pragma facilitates this process. Rewriting source code in order
to minimize the number of function calls is an alternative
approach. While this approach requires more effort, it allows a
finer control of the design, which can help to produce a more
consistent results for benchmarking purposes.

Data storage. The next step is optimizing data types and
sizes of arrays, and providing the tool with directives on how
these arrays should be translated into hardware. Vivado HLS
synthesis tool supports a flexible base data type, uint[size].
Utilizing a correct size for our needs can significantly increase
design efficiency.

The speed at which data can be accessed is determined by
its type and/or array dimension. By default, one clock cycle
is required to access an element of an array (memory). This
feature can significantly limit the design’s throughput. Flat-
tening the memory can alleviate this problem. This, however,
can produce an adverse effect in terms of resource utilization.
Thus, memory partitioning should be done very carefully, and
should use the overall design’s structure as a guide.

A memory can either be a ROM or RAM depending on
the pragma specified. In Vivado HLS, a ROM inference can
be done via the RESOURCE pragma, using an asynchronous
ROM (ROM_1P_1S) core, which is one of many hardware
types that can be specified. This type is particularly useful
when the designer does not want the tool to implement
a given storage component using BlockRAM. The change
to asynchronous ROM can significantly reduce the design
latency.

Loop Optimization. In order to fully realize the potential of
the design after data storage has been optimized, all loops of
the program must be optimized as well. In Vivado HLS, the
UNROLL pragma is the best directive to realize this potential.
This directive informs the tool to unroll the operations within
a loop, so they can be executed in parallel, thereby increasing
the overall throughput of the loop. However, an additional
code refactoring, based on the Speculation and Loop Invariant
techniques can be still required [21].

The final aspect of code optimization, and perhaps, one
of the most difficult ones is temporal parallelism extraction,
which is essentially pipelining. While the tool can infer
pipelining for standard DSP operations, it is not yet so-
phisticated enough to facilitate a more complex pipelining
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Fig. 7: Verification framework. Notation: PY - Python app,
TXT - ASCII Text File, HDL - Hardware Description Lan-
guage code, AEAD - Authenticate Encryption with Associated
Data (name of the top-level core).

behavior, e.g. block-level pipelining, required by cryptographic
algorithms. As a result, careful code refactoring has to be per-
formed in order to guide the tool to infer a correct operation.

D. Verification and Debugging

Fig. 7 presents our entire verification and debugging frame-
work. This framework relies on a generic test vector generator,
available as a part of [24]. This generator can automatically
create the equivalent test vectors for both software and hard-
ware verification. Only when the HLS-ready C code is judged
to be fully operational based on software functional verifica-
tion, the corresponding CipherCore HDL code is generated
using HLS, as shown in Fig. 3. The designer then proceeds
to the hardware functional verification, which is performed
using exactly the same approach as in the RTL development
flow. If the entire HDL code, including the HLS-generated
CipherCore passes this hardware verification, this code is then
used to generate the final post-place and route results.

V. FEATURES OF THE IMPLEMENTED ALGORITHMS AND
THEIR HARDWARE ARCHITECTURES

In order to verify our hypothesis, 16 authenticated ciphers,
representing 13 candidate families and the current FIPS stan-
dard, AES-GCM, have been selected as our test case. All
investigated candidate families have been qualified to Round
3 of the competition, which has been in progress at the time
of the submission of this paper. The only two families not
represented in this study are: 1) AEZ - as this family does
not have a single-pass representative, and implementing a
two pass-authenticated cipher was beyond the scope of this
study, and 2) Keyak, whose RTL implementation (developed
by the authors of the algorithm) is not fully compliant with
the CAESAR Hardware API due to its design novelty. For
all candidates, an effort was made to implement at least
the primary variant, targeting Use Case 2: High-performance
applications.

Taking into account that the majority of the RTL implemen-
tations available at the time of writing were implementations
of the Round 2 variants of the Round 3 candidates (without
Round 3 tweaks), for the fairness of comparison, the same

exact variants were used for our HLS implementations, as
shown in Table IV.

The major features of the implemented variants of authen-
ticated ciphers and their RTL HDL and HLS C designs are
summarized in Table IV. The implemented ciphers represent
three major classes of authenticated ciphers: block-cipher-
based (mostly, but not exclusively, built around the AES Prim-
itive), stream-cipher-based, and the sponge constructions [3].

All RTL implementations used in this study have been
developed as a part of the open Round 2 VHDL/Verilog
development/benchmarking process, summarized in [5]' The
primary contribution of this work is the development of
HLS-ready implementations of all investigated candidates, and
then the comparison of the obtained results, with the results
reported for the existing RTL implementations in the on-line
database of results [25], at the time of the paper submission.

Similarly to the open CAESAR Round 2 VHDL/Verilog
development process, our primary optimization target is the
best Throughput to Area ratio, where Throughput is defined
as Throughput for long messages, and Area is expressed in
terms of the number of LUTs of Xilinx FPGAs.

In all algorithms investigated in this paper, the speed of
encryption and decryption is the same. Additionally, the Asso-
ciated Data processing speed is at least as high as the speed of
encryption. The formula for the throughput for long messages
is given by (1).

Throughput = Block_Size/(Cycles_per_block - Teyr,) (1)

The number of clock cycles per one block of message/-
ciphertext (Cycles_per_Block) is summarized in Table IV.
This number is similar, but not necessarily the same for the
RTL-based and HLS-based approach. For the majority of
implemented ciphers, the automatically generated Controller
of the CipherCore (initially described in C) tends to be sub-
optimal, compared to the manual design using RTL VHDL.
This is because the HLS-generated unit is often not capable of
supporting an overlap between the completion of the last round
of encryption/decryption and reading the next input block.
Moreover, additional clock cycles are often added by the HLS
scheduler when entering/exiting a control region. As a result,
the throughput of the HLS-based design tends to be lower than
the throughput of the manual design, even if they both operate
at the same clock frequency.

V1. RESULTS AND DISCUSSION
A. Benchmarking

The FPGA families targeted in this study, Virtex-6 and
Virtex-7, are a subset of families used in the comprehensive
CAESAR Round 2 benchmarking study [5]. Exactly the same
FPGA devices have been used as target devices in this project.

In order to minimize any discrepancies between the rankings
obtained using HLS and RTL-based approaches, we applied
the same tools and optimization techniques to both manually

'We do not claim any authorship of any subset of these implementations,
as doing so, would violate the anonymity of this submission.



TABLE IV: Features of the implemented variants of authenticated ciphers and their hardware designs. Notation: AES[1] - one-
round AES, LFSR - Linear Feedback Shift Register, LRX - Logic-Rotation-XOR, SPN - Substitution-Permutation Network.

Algorithm Variant / Basic Block | Rounds | Cycles_per_block | Cycles_per_block Ratio
‘ ‘ SW Reference ‘ Primitive ‘ Size ‘ RTL HLS ‘ HLS/RTL ‘
\ Block-cipher-based \
| AES-GCM i aes128gcmvl [ AES [ 128 | 10 ] 11 [ 12 [ 1.09 |
AEGIS aegis128l AES[1] 256 1 1 1 1.00
AES-OTR aes128otrpv2/v3? AES 128 10 12 12 1.00
CLOC-AES aes128n12t8clocv2 AES 128 10 11 12 1.09
COLM colmOv1 AES 128 10 11 12 1.09
Deoxys deoxysneq128128v13 Deoxys-BC 128 14 15 16 1.07
JAMBU-AES aesjambuv2 AES 128 10 10 12 1.20
JAMBU-SIMON simonjambu96v2 SIMON 48 52 54 55 1.02
OCB aeadaes128ocbtaglen128v1 AES 128 10 12 12 1.00
SILC-AES aes128n12t8silcv2 AES 128 10 10 12 1.20
Tiaoxin tiaoxinv2 AES[1] 128 1 1 1 1.00
Stream-cipher-based
ACORN acorn128v2 LFSR 32 1 1 1 1.00
MORUS ‘ ‘ morus1280128v1 ‘ LRX ‘ 256 ‘ 1 ‘ 1 1 1.00
Sponge-construction
Ascon ascon128vI1 SPN 128 8 9 10 1.11
Ketje ketjesrvl Keccak-f 32 1 1 1 1.00
NORX norx3241v2 LRX 384 4 4 6 1.50

2 v2 used in the HLS implementation, v3 in the RTL implementation.

written and automatically generated HDL code. The synthesis
of HDL code was accomplished using Vivado HLS v2015.4,
with VHDL as a target language. Logic synthesis and imple-
mentation (mapping, placing, and routing) were performed by
ISE Design Suite v14.7 for Virtex 6, and by Xilinx Vivado
v2015.4 for Virtex 7. In terms of optimization of tool options,
for Virtex 6, we have used Xilinx ISE and ATHENa [26], for
Virtex 7, we have applied 25 default optimization strategies
available in Xilinx Vivado.

The options of synthesis and optimization tools have been
set to infer the use of zero Block RAMs and zero DSP units
inside of AEAD. These FPGA-specific resources were not used
because otherwise area (resource utilization) would become a
vector, such as (#LUTs, #DSP units, #BRAMs). Additionally,
a previous study for similar cryptographic algorithms has
demonstrated that area in logic resources (such as LUTSs) in
FPGA technology correlates well with area in gate equivalents
in ASIC technology [27]. As a result, using LUTs alone as a
unit of area seems to give us an additional insight regarding the
relative cost of implementing investigated ciphers in ASICs.

B. Analysis of Results

In terms of the ratio of the number of clock cycles required
to process data by circuits generated using HLS-based and
RTL-based approaches, our HLS C implementations signifi-
cantly outperform the earlier attempts at cryptographic bench-
marks, reported in [15], and shown in Table I. The smallest
ratio reported in Table I is 2.5 for the sha benchmark. On
the other hand, in our implementations, even the worst ratio,
reported in the rightmost column of Table IV is significantly
smaller, at 1.50, and all remaining ratios are at or below 1.20.
Additionally, for all algorithms using one clock cycle per block
in RTL, this ratio is equal to an ideal value of 1.00. Such big
difference in these results can be partially explained by the fact
that the authors of [15] have not seriously attempted to match
the performance of manual designs, and might have been even

unaware how many clock cycles these manual designs required
to perform the same task. Still, we believe that beating these
previous attempts by such a large margin, and accomplishing
the equal number of clock cycles for 6 out of 16 designs, and
comparable (smaller than or equal to 20%) for 15 out of 16
algorithms is a significant achievement by itself.

In Figs. 8 and 9, we show the rankings of all implemented
ciphers in terms of Throughput and Throughput to Area ratio,
respectively. For each of the two FPGA families, Virtex-6 and
Virtex-7, these graphs show absolute values of the respec-
tive metrics for both RTL and HLS-based implementations.
In the legends of these diagrams, the pairs (RTL_position,
HLS_position) show the relative rankings of each candidate
obtained using the respective design flow. For all three perfor-
mance metrics, a substantial percentage of relative positions
remain stable, independently of the benchmarking methodol-
ogy and the target platform. At the same time, some changes in
the relative rankings are clearly unavoidable, especially for the
sub-groups of implemented algorithms with a relatively similar
performance in RTL according to a particular performance
metric. For example, in Fig. 8, the leading three candidates,
AEGIS, Tiaoxin, and MORUS, are relatively close to each
other in RTL for both Virtex-6 and Virtex-7. However, for
HLS on Virtex-6, their relative ranking changes, while for
Virtex-7 it remains the same. This diagram also reveals that
six algorithms - AEGIS, Tiaoxin, MORUS, NORX, ACORN,
and Ascon, consistently outperform AES-GCM, independently
of the applied design flow.

In Figs. 10 and 11, we present the ratios of RTL to
HLS results for Xilinx Virtex-6 in terms of Throughput and
Throughput/Area ratio, respectively. In both cases, the desired
range, marked in green, is from 1.3 down to 0.9. In general,
the smaller the spread of ratios, the better the chances that the
change from RTL to HLS will not modify the rankings.

In terms of Throughput, the only outliers are SILC, Ketje,
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NORX, and ACORN, which have suboptimal HLS code in
terms of this performance metric. On the other hand, MORUS
and AES-GCM have slightly suboptimal RTL code. All other
algorithms fall within the desired range.

In terms of Throughput/Area, six algorithms, SILC, Ascon,
NORX, OCB, and Tiaoxin, have somewhat inefficient HLS
implementations. These implementations can be potentially
still improved through the code refactoring. However, the
improvement is particularly difficult for NORX, where the
majority of the advantage of the RTL code comes from the
smaller number of Cycles_per_Block, 4 for RTL, and 6 (50%

more) for HLS, as shown in Table IV. On the other hand, three
algorithms, ACORN, AES-OTR, and AEGIS, have suboptimal
RTL code in terms of Throughput/Area.

VII. CONCLUSIONS AND FUTURE WORK

The design methodology based on high-level synthesis can
potentially enable hardware benchmarking at the early stages
of cryptographic competitions, when the number of candidates
is still large (e.g., over 50 in the last two contests, SHA-3 and
CAESAR) [2], [3]. Whenever multiple designers are involved,
there is always a risk that the observed differences come from
their skill level, rather than actual algorithm differences. Using
HLS can mitigate this risk by allowing a single designer to
produce implementations of multiple (and even all) candidates.

The correct inference of desired architecture may require
substantial changes in the reference C code. During this pro-
cess, the programmer needs to repeatedly check the estimated
results, using the design cycle provided by the HLS tool,
to ascertain whether the inferred circuit corresponds to the
desired hardware architecture (in this study, the basic iterative
architecture). This check can be made by determining the
number of clock cycles per block, which should be closely
related to the number of the cipher rounds (typically just
the number of cipher rounds + a small constant, such as 1
or 2). An initial HLS run gives instead thousands of clock
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cycles per block [13]. Thus, any modifications to the code
may safely stop when the number of clock cycles per block
reaches the desired target. This feature is very specific to
high-speed implementations of symmetric-key cryptographic
algorithms (such as symmetric block ciphers, hash functions,
and authenticated ciphers). It may not apply to other domains,
or even to implementations of public-key cryptography.

In the HLS design approach, the user focuses on the
functionality of the design (datapath); the control logic is
inferred. Additionally, a C testbench development and code
verification is also much easier to conduct. These two major
factors has led to the estimated speed-up by a factor of 3
tol0 in terms of the development time. The exact value of
this speed-up has been dependent on multiple factors, such as
the algorithm itself, the quality of the specification and the
reference implementation in C, as well as relative skills of the
respective designers.

The HLS approach clearly identified that seven candidates -
MORUS, AEGIS, ACORN, Tiaoxin, Ketje, NORX, and Ascon
- consistently outperformed the current standard AES-GCM
in terms of the throughput to area ratio. However, two other
candidates SILC and JAMBU-AES swapped positions with
AES-GCM (at least for one FPGA family), depending on the
implementation approach.

Our case study, based on 16 modern authenticated ciphers,
has demonstrated strong (but not ideal) correlation in terms
of the algorithm rankings according to two major perfor-
mance metrics for high-speed implementations: throughput
and throughput to area ratio. While the approach we have
used requires more effort compared to the traditional HLS
design approach described in [15], the quality of results
is substantially better and comparable to the manual RTL
approach, while time savings remain substantive.

Future work will involve 1) development of the step-by-
step designer’s guide, including general strategies for the C
code refactoring and pragma insertion; 2) release of the full
source code of all HLS-ready C implementations developed
as a part of this study, to be used as comprehensive examples
by other designers, and as benchmarks by developers of HLS
tools; 3) design space exploration of the authenticated cipher
implementations through the inference of selected folded,
unrolled, and pipelined architectures in the HLS-ready C code;
4) experiments with multiple HLS tools, including automated
translation of Vivado HLS pragmas to the pragmas of leading
academic tools: Bambu, DWARYV, and LegUp; 5) identifying
inherent limitations of the current generation of HLS tools and
proposing possible improvements and research avenues.
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