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CERG: Cryptographic Engineering Research Group
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3 faculty members, 6 Ph.D. students
3 MS students, 9 affiliated scholars



CERG Group Members Supporting PQC

Viet Duc 

PhD Students

RTL Design of
HW Accelerators
for Lattice-based,

Code-based, 
& Secret-key-based

PQC

NEON-based SW
implementations

and
HLS Design of

HW Accelerators
for Lattice-based

PQC
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Kamyar
RTL Design of

HW Accelerators
for Lattice-based

PQC
Side-Channel

Analysis
RISC-V Accelerators

Luke 
RTL Design of

HW Accelerators
for Lattice-based

PQC

Brian 
NEON-based SW
Implementations

for
Code-based PQC



CERG Affiliated Scholars Supporting PQC

Farnoud
SW/HW Codesign
RTL Accelerators

Experimental Setup for 
Timing Measurements

CAD Tools
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Recent Graduates

Bakry
Experimental Setup

for Side-Channel 
Analysis

Lightweight
Architectures

Apple PQSecure

Michał
RTL Design of

HW Accelerators
for Lattice-based PQC

& Lattice Sieving

Polish National 
Cyber Security Centre

2019 Visitor



CERG Participation in Cryptographic Contests 2007-Present

Year07  08  09  10   11  12  13 14  15 16  17 18 19  20  21 22

SHA-3

51 hash functions ® 1 winner
X.2007 X.2012

CAESAR
I.2013

57 authenticated ciphers 
® multiple winners

II.2019

Post-Quantum

56 Lightweight authenticated ciphers 
& hash functions 

VIII.2018
Lightweight

69 Public-Key Post-Quantum 
Cryptography Schemes

XII.2016

TBD

TBD

Completed

In progressX.2012X.2012
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Post-Quantum Cryptography 
in Hardware and Embedded Systems



Quantum Computers
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• Substantial investments by:
Google, IBM, Intel, Microsoft,
and governments of multiple 
countries

Photos: https://www.technologyreview.com

• Jan 2018: Intel’s 49-qubit processor “Tangle Lake”
• Mar 2018: Google’s 72-qubit processor “Bristlecone”
• 2020-2021: Three quantum computers 

developed at the University of Science and 
Technology of China reach quantum supremacy

• Nov 2021: IBM’s 127-qubit quantum processor

Source: https://en.wikipedia.org/wiki/Timeline_of_quantum_computing_and_communication



IBM Roadmap

9Source: https://research.ibm.com/blog/ibm-quantum-roadmap

https://research.ibm.com/blog/ibm-quantum-roadmap
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1994: Shor’s Algorithm, breaks major public key cryptosystems based on

Factoring:                                           RSA

Discrete logarithm problem (DLP):   DSA, Diffie-Hellman

Elliptic Curve DLP:                             Elliptic Curve Cryptosystems

independently of the key size  
assuming 

a sufficiently powerful and reliable quantum computer available

Effect on Public-Key Cryptography



How Real Is the Danger?

Source: Vandersypen, PQCrypto 2017; Lily Chen, seminar, 2020

“There is a 1 in 5 chance that some fundamental public-key crypto will be broken by quantum by 2029.”
Dr. Michele Mosca
Deputy Director of the Institute for Quantum Computing, University of Waterloo
2020
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Usefulness threshold 
(depends on quantum algorithms
and quantum error correction) 



Post-Quantum Cryptography (PQC)
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• Public-key cryptographic algorithms for which there are 
no known attacks using quantum computers

• Capable of being implemented using any traditional methods, 
including software and hardware

• Running efficiently on any modern computing platforms: 
PCs, tablets, smartphones, servers with FPGA accelerators, etc.

• Based entirely on traditional semiconductor VLSI technology!

The biggest revolution in cryptography, since the invention of 
public-key cryptography in 1970s!!!



PQC Families and Subfamilies
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Lattice-based Code-based

Isogeny-based Multivariate

Symmetric-based

Based on
Structured 

Lattices

Based on
Unstructured 

Lattices

Based on
Classical

Codes

Based on
Short-Hamming

Codes

Based on
Hash

Functions

Based on
Zero-Knowledge

Proofs



Two Major Types of Schemes & Corresponding Families

Post-Quantum
Public Key Exchange

Post-Quantum
Digital Signatures

Lattice-based

Code-based

Isogeny-based

Multivariate

Symmetric-based
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Lattice-Based Schemes

Based on
Unstructured Lattices

(a.k.a. random lattices)

Based on
Structured Lattices
(a.k.a. ideal lattices)
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• Keys have the form of large matrices
• Major operation: 

matrix-by-vector multiplication
• Large public keys
• Low performance
• Low risk of attacks 

• Keys have the form of polynomials
• Major operation: 

polynomial multiplication
• Moderate public keys
• High performance 
• Moderate risk of attacks

� Operations on large matrices 
(e.g., 532x840)

� Mostly matrix-vector multiplication modulo ݍ ൏ ʹଷଶ

� Large public keys (e.g., 532x840 matrix)

To be Ideal or not Ideal?

� Ideal Lattices

� Operations on polynomials with 256 or 
512 coefficients

� Mostly polynomial multiplication modulo 
ݍ ൏ ʹଷଶ

� Public keys are one (or two) polynomials 
with 256 or 512 coefficients

� Random Lattices

Two important lines of research: random lattices and ideal lattices
� Major impact on implementation (theory not that much)
� Security for random lattices is better understood 

(ideal lattices are more structured)

� Operations on large matrices 
(e.g., 532x840)

� Mostly matrix-vector multiplication modulo ݍ ൏ ʹଷଶ

� Large public keys (e.g., 532x840 matrix)

To be Ideal or not Ideal?

� Ideal Lattices

� Operations on polynomials with 256 or 
512 coefficients

� Mostly polynomial multiplication modulo 
ݍ ൏ ʹଷଶ

� Public keys are one (or two) polynomials 
with 256 or 512 coefficients

� Random Lattices

Two important lines of research: random lattices and ideal lattices
� Major impact on implementation (theory not that much)
� Security for random lattices is better understood 

(ideal lattices are more structured)



NIST PQC Standardization Process
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69
candidates

Round 1
26 15

Round 3

Jan. 2019 Jul. 2020 2022
Nov. 2017 

Round 2
? 

Hardware benchmarking

Security Analysis & Software Benchmarking



Five Security Levels

Level Security Description
1 At least as hard to break as AES-128 using exhaustive 

key search
2 At least as hard to break as SHA-256 using collision 

search
3 At least as hard to break as AES-192 using exhaustive 

key search
4 At least as hard to break as SHA-384 using collision 

search
5 At least as hard to break as AES-256 using exhaustive 

key search

17



Round 3 Candidates
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Classic McElieceCRYSTALS-KYBER
NTRU
SABER

CRYSTALS-DILITHIUM
FALCON

Rainbow

Encryption/KEM

Digital Signature
Lattice-based

Lattice-based Code-based

Multivariate
FINALISTS

ALTERNATE

Encryption/KEM

Digital Signature

Lattice-based

FrodoKEM
NTRU Prime

Code-based

BIKE
HQC

Isogeny-based

SIKE

GeMSS

MultivariateSymmetric-based

Picnic
SPHINCS+



Recent Developments
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Round 3 Candidates

Classic McElieceCRYSTALS-KYBER
NTRU
SABER

CRYSTALS-DILITHIUM
FALCON

Rainbow

Encryption/KEM

Digital Signature
Lattice-based

Lattice-based Code-based

Multivariate
FINALISTS

ALTERNATE

Encryption/KEM

Digital Signature

Lattice-based

FrodoKEM
NTRU Prime

Code-based

BIKE
HQC

Isogeny-based

SIKE

GeMSS

MultivariateSymmetric-based

Picnic
SPHINCS+

Breaking Rainbow Takes a Weekend on a Laptop
by Ward Beullens, https://eprint.iacr.org/2022/214, received 21 Feb 2022

https://eprint.iacr.org/2022/214


Favorites for first-generation standards
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CRYSTALS-KYBER

CRYSTALS-DILITHIUM

SABER NTRU

FALCON

Digital Signatures

Key Exchange (Key Encapsulation Mechanism – KEM)

Classic McEliece

SPHINCS+

Based on 
structured lattices

Based on 
classical codes

Based on 
structured lattices

Symmetric-based
(hash-based)



Round 3 PQC Key Exchange + Classical PKE
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Isogeny

Structured Lattices

Short-Hamming Codes

Unstructured Lattices

Classical Codes
Elliptic-Curve Cryptography

(classical)



Round 3 + Classical Digital Signature Schemes
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Structured Lattices

Multivariate

Symmetric-based

Elliptic-Curve Cryptography (classical)



Certificate Size Ratio

Classic McEliece + SPINCS+ 

SABER + CRYSTALS DILITHIUM  
> 100

Client Server
Request

Certificate={Public_KeyServer, SignatureCA} 

Ciphertext

Certificate 
Size
Ratio
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Evaluation Criteria

24

Software  Efficiency Hardware Efficiency 

Simplicity Flexibility

Security

Size of Keys, 
Ciphertext, and 

Signatures
Patent
Issues



CERG Major Contributions
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High-Speed Hardware
Implementations of KEMs:

High-Speed Hardware
Implementations of 
Digital Signatures:

Lightweight Hardware
Implementations of KEMs
Resistant Against 
Side-Channel Attacks

NEON-Based Software
Implementations

• NTRU (first)
• CRYSTALS-Kyber
• Saber

• CRYSTALS-Dilithium
• Falcon (verification only) (first)

• Saber (first)

• NTRU
• CRYSTALS-Kyber
• Saber



Hardware
Benchmarking 
Methodology
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Design Approach
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Register-Transfer
Level
(RTL)

High-Level 
Synthesis

(HLS)

Software/Hardware
Co-Design
(SW/HW)

• HW: VHDL, Verilog, Chisel

• Industry standard
• Highest-performance
• Best trade-offs between

speed vs. area

• Long development time

• HW: C, C++, System C

• Short development time

• Lower performance
in terms of speed and/or area
(for PQC, some reports showing
2-4 orders of magnitude 
difference)

• SW:  C, assembly
• HW RTL: VHDL, Verilog, Chisel
• HW HLS: C, C++, System C

• Short development time

• Communication overhead
• Strong dependence on 

a partitioning scheme
• Inconclusive results

Rounds 1 & 2 Round 3



Operations Supported by Each Core
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Encapsulation
& Decapsulation Encapsulation,

Decapsulation,
& Key generation 

Encapsulation

Decapsulation

Key Generation 

vs.

Demonstrate potential for resource sharing

Key Generation 

Key Generation
& Decapsulation 

Encapsulation

vs. vs.

Demonstrate
Area of Each 

Operation

Each core can operate with its own maximum clock frequency



Security Levels Supported by Each Core

Security 
Level 1 Security

Level 3

Security 
Level 

5

Security 
Levels

1, 3, & 5vs.

Source
Code

Source
Code

Choice at the time 
of synthesis 

Choice at run time 
Multiple result sets with minimal effort

1 area, 1 clock frequency 293 areas, 3 clock frequencies



Design Space Exploration
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LightweightHigh-speed Balanced
Primary Metrics:

Area
Power

Secondary Metrics:
Latency
#Operations_per_s

Secondary Metrics:
Area
Power

Primary Metrics:
Latency
#Operations_per_s

Primary Metrics:

Latency · Area
#Operations_per_s / Area



FPGA Platforms & Tools
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Platforms:
Artix-7:          XC7A200T-3,    28 nm technology
134,600 LUTs 365 BRAMs 740 DSPs

Zynq UltraScale+:         ZU7EV-3,       16 nm technology
230,400 LUTs 312 BRAMs 1,728 DSPs
Tools:

Vivado WebPack 2020.1 (free)

All results reported after placing & routing
In PQC, the use of LUTs typically most limiting  ⇒ Area represented by #LUTs



Results for KEMs 
in Hardware
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Assumptions
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• 3 operations and 1 security level supported by each core
• 3 cores per algorithm 

Security 
Level 1

Security
Level 

3

Security
Level

5

Source
Code

Choice at the time 
of synthesis 

Encapsulation,
Decapsulation,

& Key generation 
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Level 1: Key Generation on Artix-7
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Level 1: Encapsulation on Artix-7
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Level 1: Decapsulation on Artix-7
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Level 3: Key Generation on Zynq UltraScale+
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Level 3: Encapsulation on Zynq UltraScale+
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Level 3: Decapsulation on Zynq UltraScale+
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Level 5: Key Generation on Artix-7
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Level 5: Encapsulation on Artix-7
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Level 5: Decapsulation on Artix-7
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Design Choices
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Most Commonly-Used Algorithms for Polynomial Multiplication

Typically:

k=2:  Karatsuba :   O(n1.58)

k=3:  Toom-3     :   O(n1.46)

k=4:  Toom-4     :   O(n1.40)

Number Theoretic Transform

in SW

in HWO(n)



Choice of a Polynomial Multiplier
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IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2022 4
TABLE 3: Features of algorithms and parameter sets affecting the choice of a multiplier type

Small
Coefficient

Range

Number
of

coefficients

NTT
friendly

ring

One
Operand
in NTT
domain

”Small” ⇥ ”Large”
Polynomial

Multiplication in
KeyGen/Encaps/Decaps

”Large” ⇥ ”Large”
Polynomial

Multiplication in
KeyGen/Encaps/Decaps

ntruhrss701
[-1..1]

701
N N

5/1/3 8⇤/–/1
ntruhps2048677 677 5/1/3 8⇤/–/1
ntruhps4096821 821 5/1/3 8⇤/–/1

Kyber512 [-3..3], [-2..2]
256 Y Y

4/6/8 –/–/–
Kyber768 [-2..2] 9/12/15 –/–/–
Kyber1024 [-2..2] 16/20/24 –/–/–

LightSaber-KEM [-5..5]
256 N N

4/6/8 –/–/–
Saber-KEM [-4..4] 9/12/15 –/–/–
FireSaber-KEM [-3..3] 16/20/24 –/–/–

⇤ Performed in polynomial inversion in Sq

As shown in Table 3, NTRU-HPS and NTRU-HRSS are
the only investigated candidates that require multiplying
two polynomials with ”large” coefficients. Values of n and q

do not fulfill the requirements of NTT. None of the operands
is stored in the NTT domain. As a result, using a Toom-Cook
multiplier appears to be the best choice. These multipliers
have an area smaller than the Schoolbook and larger than
NTT types. They can be sped up using a relatively moderate
number of DSP units. Consequently, they appear to be the
natural choice for the implementation of the ”large” by
”large” polynomial multiplication in the key generation and
decapsulation operations of NTRU.

4.2 NTRU
The top-level diagram of NTRU is shown in Fig. 1. Below we
describe the way of performing major operations of NTRU-
HRSS and NTRU-HPS using this circuit.

4.2.1 Ternary Sampling
For NTRU-HRSS, the generation of polynomials f and g

is performed in S3 during key generation. Random bytes
coming from SHAKE128 are reduced modulo 3 to ob-
tain the ternary coefficients stored in a first-in, first-out
(FIFO) unit. The sum of products of consecutive coefficients
s =

P
i fifi+1 is computed at the same time. After finishing

generating all coefficients, if s < 0, coefficients at even
indices are signed-flipped before being transferred to the
next computational stage. Thus, the non-negative correla-
tion properties of f and g are satisfied. g is later multiplied
by x � 1, which can be carried out trivially during the
transfer. During encryption, r and m do not have either the
non-negative correlation property or fixed-weight. They can
be computed by simply reducing random data modulo 3.

For NTRU-HPS, f and r have arbitrary weight and can
be sampled in a straightforward manner. However, m and g

have fixed weight and are sampled by creating a random
permutation of a list with a fixed number of values �1,
0, and 1. One can simply perform Fisher-Yates shuffle to
have a random non-biased permutation of such a list. How-
ever, Fisher-Yates shuffle is not constant-time and creates
a risk of potential timing attacks. Given that, we adopt a
constant-time merge sorting approach for the permutation.
The merge-sort module requires n random elements. Each
element includes 30 random bits concatenated with ”01”

for the first w/2 elements, ”10” for the next d/2 elements,
and ”00” for the rest. To get a 30-bit block, a 64-bit input is
passed through a PISO, to be divided into two 32-bit blocks.
Each 32-bit block is then processed using a buffer register
and a variable shifter to get a 30-bit block. The leftover
bits are stored in the buffer register to be concatenated with
the subsequent output of PISO. After sorting, the upper 30
bits are discarded, and the lower 2 bits are converted from
{0, 1, 2} to {0, 1,�1}.
Related work: Wang et al. [5] proposed a fully pipelined
constant-time merge sort module to generate random
permutation in the Key Generation operation of Classic
McEliece. To sort a random list of n elements, the module
needs log2(n) iterations, where each step requires O(n)
comparison operations. Therefore, the total cycle count is
approximately equal to nlog2(n) cycles. Marotzke [13] im-
plemented an iterative Batcher’s merge exchange sort mod-
ule for a very similar sampling function in the Streamlined
NTRU Prime. Its operation also have asymptotic complexity
of O(nlog2(n)).

To speed up this operation, we use a merge-sort mod-
ule consisting of log2(n) cascaded Sort Stages to sort the
random sequences. The FIFO-based merge-sort module for
NTRU-HPS677 is shown in Fig. 2. The inputs to each Sort
Stage are two sorted lists, and the output is a sorted list of
double input length, including all elements from the two
input lists. Each input list is stored in a separate segment
of memory. While the lower stages can be implemented by
registers, the higher stages are implemented in dual-port
memory. This approach can reduce the number of LUTs and
FFs used to construct a large FIFO in higher stages at the
cost of a small number of BRAMs. By using the dual-port
memory, the controller in each stage can write out the sorted
list to the next stage and receive other input lists from the
previous stage simultaneously. By pipelining the operation
of multiple Sort Stages, we can achieve a highly optimized
latency for sorting. Our merge-sort module requires n clock
cycles for reading n elements, roughly n cycles for sorting,
and another n cycles to write out a sorted sequence. In
particular, sampling m or g takes 2,678 and 3,343 cycles for
NTRU-HPS677 and NTRU-HPS821, respectively.

The comparison of our FIFO-based merge sort module
with previous work is shown in Table 4. We synthesize our
module with the parameters used in [13] and [5]. Since the
code of [5] is open-source, we can synthesize their merge-

* Part of
polynomial inversion 



Choice of a Polynomial Multiplier
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CRYSTALS-Kyber SaberNTRU

k x NTT-based Schoolbook
Toom-Cook

k= 2, 3, 4
for Security Levels 1, 3, 5

Toom-3 + Karatsuba

u – unrolling factor
(#coefficients of B multiplied by A)

Based on 15･d DSP units

Schoolbook
when one polynomial ternary,
i.e., w/ coefficients {-1, 0, 1}

d= 2, 3
u= 1, 2, 4+ Karatsuba

during pointwise 
multiplication or

NTT-based

“Large” x “Large”

“Small” x “Large”

“Small” x “Large”“Small” x “Large”



Example of a Block Diagram: Saber
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Example of Scheduling Diagram: Saber Encapsulation 
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Results for 
Digital Signatures 
in Hardware
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Assumptions for CRYSTALS-Dilithium
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• 3 operations and 3 security levels supported by each core
• 1 core per algorithm 

Sign,
Verify,

& Keygen

Security 
Levels 

2, 3, & 5

Source
Code

Choice at run time 



Assumptions for Falcon
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• 1 operation and 1 security level supported by each core
• 2 cores per algorithm 

Security
Level 1

Security 
Level

5

Source
Code

Choice at the time 
of synthesis 

Verify
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Level 5: All Operations on Artix-7: Latency

TW– This Work

best

worst
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Level 5: All Operations on Artix-7: Resource Utilization

TW– This Work

best

worst
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Level 5: All Operations on Kintex-7: Latency

TW– This Work

best

worst
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Level 5: All Operations on Kintex-7: Resource Utilization

TW– This Work
best

worst
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Level 5: Signature Verification: Artix-7: Latency vs. Certificate Size

TW– This Work

*K7 – Kintex-7best

worst



Results for the Lightweight 
Implementation Resistant 
Against SCA
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• Lightweight unprotected implementation of Saber

• Protected implementation based on arithmetic and Boolean masking
• X = X0 xor X1          → Boolean
• X = X0 + X1 mod q → Arithmetic

• Arithmetic shares for polynomial arithmetic, Boolean in SHA-3

• Partially based on the protected software implementation by 
Beirendonck et al., 2020

Approach
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Experimental Verification Using Test-Vector Leakage Assessment

16/21CERG

Leakage Assessment

 TVLA results with 

PRNG off (Top) 

and on (bottom)

16/21CERG

Leakage Assessment

 TVLA results with 

PRNG off (Top) 

and on (bottom)

Unprotected

Protected
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• Clock cycles for decapsulation:
52,758 → 72,005  [ x 1.36 ]

• #LUTs:
6,713 → 19,299   [ x 2.87 ]

• #DSPs:
32 → 64            [ x 2.00 ]

Overhead of the GMU Protected Implementation of Saber
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NEON

• NEON is an alternative name for ASIMD -
Advanced Single Instruction Multiple Data 
extension to the ARM Instruction Set 
Architecture, mandatory since ARMv7-A. 

• NEON provides 32x128-bit vector registers. 
Compared with Single Instruction Single 
Data (SISD), NEON can have ideal speed-up 
in the range 2..16 (for 64..8-bit operands). 

Firestorm core of Apple M1:
part of new MacBook Air, MacBook Pro, 

Mac Mini, iMac, and iPad Pro

Cortex-A72 of Broadcom SoC, BCM2711: 
part of the Raspberry Pi 4

single-board computer
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NEON Project Goals

- Most  software implementations of PQC 
candidates on:
§ Intel/AMD (w/ AVX2 extension)
§ ARM Cortex-M4 (w/ DSP extension)

- We developed constant-time, optimized 
ARMv8 implementations of 3 KEM finalists: 
§ CRYSTALS-Kyber
§ NTRU
§ Saber

Intel/AMD

DSP AVX2NEON

Speed/Power

ARM
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Optimal Choice of Algorithms

6 Optimized Software Implementations Using NEON-Based Special Instructions

based on CPA public-key encryption scheme with a slightly tweaked FO transform [18].
Improving performance of public-key encryption helps speed up KEM as well. Kyber
public and private keys are assumed to be already in NTT domain. This feature clearly
di�erentiates Kyber from Saber and NTRU. The multiplication in the NTT domain has
the best time complexity O(n log n).

The algorithms for encryption and decryption are shown in Algorithms 5 and 6. The
GenMatrix operation generates the matrix Â of the dimensions k ◊ k, where k œ {2, 3, 4}.
Additionally, GenMatrix enables parallel SHA-3 sampling for multiple rows and columns,
with the parameters seedA, i, and j. Sample

B
are samples from a binomial distribution,

similar to GenMatrix. Unlike Saber, Sample
B

and GenMatrix in Kyber enable parallel
computation. More details can be found in the Kyber specification [19].

3.4 Polynomial Multiplication

In this section, we introduce polynomial multiplication algorithms, arranged from the
worst to the best in terms of time complexity. The goal is to compute the product of two
polynomials in Equation 1 as fast as possible.

C(x) = A(x) ◊ B(x) =
n≠1ÿ

i=0
aix

i ◊
n≠1ÿ

i=0
bix

i (1)

Schoolbook Toom ≠ Cook NTT

O(n2) O(n
log(2k≠1)

log k ) O(n log n)

3.4.1 Schoolbook Multiplication

Schoolbook is the simplest form of multiplication. The algorithm consists of two loops
with the O(n) space and O(n2) time complexity, as shown in Equation 2.

C(x) =
2n≠2ÿ

k=0
ckx

k =
n≠1ÿ

i=0

n≠1ÿ

j=0
aibjx

(i+j) (2)

3.4.2 Toom-Cook and Karatsuba

Toom-Cook and Karatsuba are multiplication algorithms that di�er greatly in terms of
computational cost versus the most straightforward schoolbook method when the degree
n is large. Karatsuba [20] is a special case of Toom-Cook [21, 22] (Toom-k). Generally,
both algorithms consist of five steps: splitting, evaluation, point-wise multiplication,
interpolation, and recomposition. An overview of polynomial multiplication using Toom-k
is shown in Algorithm 7. Splitting and recomposition are often merged into evaluation
and interpolation, respectively.

Examples of these steps in Toom-4 are shown in Equations 3, 4, 5, and 6, respectively.
In the splitting step, Toom-k splits the polynomial A(x) of the degree n ≠ 1 (containing n

coe�cients) into k polynomials with the degree n/k ≠ 1 and n/k coe�cients each. These
polynomials become coe�cients of another polynomial denoted as A(X ). Then, A(X ) is
evaluated for 2k ≠ 1 di�erent values of X = x

n/k. Below, we split A(x) and evaluate A(X )
as an example.

CRYSTALS-KYBERNTRU

Saber
?

Based on the analysis of algorithms, their parameters, and AVX2 implementations 
for the 3 lattice-based KEMs finalists



NEON Benchmarking Methodology

Apple M1 System on Chip Firestorm core, 3.2 GHz1, MacBook Air
Broadcom BCM2711 System on Chip Cortex-A72 core, 1.5 GHz, Raspberry Pi 4
Operating System MacOS 11.4, Arch Linux (March 25, 2021)
Compiler clang 12.0 (MacBook Air), clang 11.1 (Raspberry Pi 4)
Compiler Options -O3 -mtune=native -fomit-frame-pointer
Cycles count on Cortex-A72 PAPI2

Cycles count on Apple M1 Modified3 from Dougall Johnson’s work4

Iterations 10,000,000 on Apple M1 to force CPU to run on 
high-performance “FireStorm” core;
1,000,000 otherwise

1 https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
2 D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting Performance Data with PAPI-C,” 
in Tools for High Performance Computing, 2009

3 https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c
4 https://github.com/dougallj 65

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c
https://github.com/dougallj
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NTT vs. Toom-Cook for Saber

On Apple M1, NTT better by 3-7%
On Cortex-A72, NTT better by 12-21%

All values in cycles

GHz

GHz
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Ranking for NEON Implementations

Decapsulation ranking of NEON implementations at Levels 1, 3 and 5
Encapsulation ranking of NEON implementations at Level       3 and 5:
1. CRYSTALS-Kyber
2. Saber   [1.27-1.49 slower]
3. NTRU (Levels 1 & 3 only) [1.51-1.83 slower]
Consistent between Cortex-A72 and Apple M1. 

Exception: Encapsulation at Level 1
1. NTRU
2. CRYSTALS-Kyber [1.02-1.43 slower]
3. Saber [1.39-1.63 slower]
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Apple M1 w/NEON @ 3.2 GHz vs. Intel Core i7-8750H w/AVX2 4.1 GHz

Intel Core i7 using 6-10% fewer clock cycles
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Apple M1 w/NEON @ 3.2 GHz vs. Intel Core i7-8750H w/AVX2 4.1 GHz
Frequency Scaling Effect

15.1

11.6
14.3

11.2

25.5

18.9

24.2

18.4

37.1

28.0

36.1

27.6
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25.0
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AVX2-Saber-Encap NEON-Saber-Encap AVX2-Saber-Decap NEON-Saber-Decap

Level 1 Level 3 Level 5

Time measured with the ns accuracy using clock_gettime() on a MacBook Air and a PC laptop   

Time [us]
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Conclusions
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• High-speed hardware for KEMs:
• CRYSTALS-Kyber and Saber comparable; Saber more flexible
• NTRU and Classic McEliece significantly slower for key generation and 

somewhat slower for decapsulation and encapsulation
• SIKE, BIKE, HQC, and FrodoKEM orders of magnitude slower

• High-speed hardware for Digital Signatures:
• CRYSTALS-Dilithium efficient and easy to implement
• FALCON Verify operation the fastest, but KeyGen and Sign prohibitively complicated
• SPHINCS+ and Picnic outperformed by CRYSTALS-Dilithium

• Lightweight hardware for KEMs w/ SCA countermeasures:
• Saber relatively easy to protect against side-channel attacks

• NEON-based software implementations
• CRYSTALS-Kyber slightly faster than Saber; NTRU noticeably behind in most cases



Gazing the PQC Crystal Ball 
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NIST possible choices

Conservative
(security-based)

Cautious Efficient & Flexible

Classic McEliece

SPHINCS+

NTRU

None

SABER 
or

CRYSTALS-Kyber

CRYSTALS-Dilithium
or

FALCON

Key
Encapsulation
Mechanism:

Digital
Signature:



Q&A
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CERG: http://cryptography.gmu.edu
ATHENa:  http://cryptography.gmu.edu/athena

Questions? Comments?

Thank You!

Choose: PQC



Backup
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NSA’s Cybersecurity Perspective on PQC, Jul 2020
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• Strong preference for Lattice-Based Cryptography
• “fairly well-studied”
• “secure when well-parameterized”
• “among the most efficient”

• Planned adoption for National Security Systems (NSS)

Concerns about the viability of the majority of 
lattice-based schemes, 2021
• Patent issues
• New S-unit attack by Dan Bernstein, et al.

2022-2024: Draft of First-Generation Standards, 
Round 4, On Ramp for non-lattice Digital Signature

Related Developments



SIAM Conference on Applied Algebraic Geometry, Aug. 2021

S-unit attacks

Daniel J. Bernstein

University of Illinois at Chicago; Ruhr University Bochum

Includes new joint work with
Kirsten Eisenträger, Tanja Lange, Karl Rubin,
Alice Silverberg, and Christine van Vredendaal.

Builds upon vast previous literature;
see upcoming paper for credits.

Plenary Talk

76



Unproven Conjuncture

Conjectured scalability: exp(n1=2+o(1)
)

Simple algorithm variant, skipping many speedups:
Take traditional log y œ n1=2+o(1).
Take S = Œ fi {P : #(R=P) Æ y}.
Precompute

�
S-unit u œ R :

P
i
u2

i
Æ n1=2+o(1) .

Compute S-generator g of I .
Replace g with gu=v having log vector closest to I ;
repeat until stable ∆ small S-generator of I .
Multiply by PcP≠c gens ∆ short element of I .
Repeat yO(1) times, avoiding cycles; take shortest.
Heuristics ∆ ” Æ n1=2+o(1), time exp(n1=2+o(1)).
“Vector within › of shortest in subexponential time.”

Daniel J. Bernstein S-unit attacks 47
77



Dan Bernstein’s Classification

Two di�erent optimization goals

If goal is to minimize enc + dec time, best option is
Quotient NTRU: original 1998 Ho�stein–Pipher–Silverman NTRU.
Keygen: G = e/a. Enc: B = Gb + d . Dec: . . .
If goal is to minimize keygen + enc + dec time, best option is
Product NTRU: 2010 Lyubashevsky–Peikert–Regev (LPR).
Keygen: A = aG + e. Enc: B = Gb + d , C = M + Ab + c . Dec: . . .
NTRU’s ntruhrss and ntruhps options: Quotient NTRU.
NTRU Prime’s sntrup option: Quotient NTRU.
NTRU Prime’s ntrulpr option: Product NTRU.
SABER: Product NTRU.
Kyber: Product NTRU.

Daniel J. Bernstein: NTRU, NTRU Prime, SABER, Kyber, Frodo 8

D.J. Bernstein, Post-Quantum Cryptography Forum, National Taipei University of Technology, January 2022 78



Dan Bernstein’s Patent AnalysisSome interesting lattice patents

Original NTRU was patented. Patent expired in 2017.
U.S. patent 9094189 until 2032 threatens Product NTRU (LPR).
Was filed before LPR was published. Kept quiet for many years.
Litigation against this patent was filed in 2017 and gave up in 2021.
U.S. patent 9246675 until 2033 threatens Product NTRU
with compressed ciphertexts. Was filed before 2014 Peikert
paper claimed LPR ciphertext compression as an “innovation”.
Apparently stopped Google’s first post-quantum experiment, 2016.
Ongoing arguments: “Non-applicability . . . to Kyber and Saber”;
but “doctrine of equivalents”; NIST’s secret patent analysis; . . .

Daniel J. Bernstein: NTRU, NTRU Prime, SABER, Kyber, Frodo 13D.J. Bernstein, Post-Quantum Cryptography Forum, National Taipei University of Technology, January 2022 79



Dan Bernstein’s Risk Analysis

Highly unstable attack picture! What do we do?

For each KEM family: Use biggest keys you can a�ord.
Can also choose a KEM family to eliminate some attack avenues:

submission NTRU NTRU Prime SABER Kyber Frodo

KEM family ntruhrss ntruhps sntrup ntrulpr saber kyber frodo
lattices risk risk risk risk risk risk risk

derandomization risk risk risk risk

decryption failures risk risk risk

structured lattices risk risk risk risk risk risk

cyclotomics risk risk risk risk

reducibility risk risk risk risk

quotients risk risk risk

extra samples risk risk risk risk

non-QROM FO risk risk risk risk risk risk risk

non-QROM 2 risk risk risk risk

Daniel J. Bernstein: NTRU, NTRU Prime, SABER, Kyber, Frodo 20D.J. Bernstein, Post-Quantum Cryptography Forum, National Taipei University of Technology, January 2022 80



Dan Bernstein’s Risk Analysis

D.J. Bernstein, https://ntruprime.cr.yp.to/warnings.html 81


